Вейерштрасса теорема

Вейерштрасса теорема

Вейерштрасса теорема [Weierstrass theorem] — фундаментальная теорема математического программирования, формулирующая условия существования глобального максимума (см. Максимизация>). Заключается в том, что если допустимое множество X является компактным и непустым (см. статью Множество>), то непрерывная целевая функция F(x), определенная на этом множестве, достигает глобального максимума на внутренней или граничной точке множества X.

При обобщении этой теоремы на случай бесконечномерного пространства (см. Многомерное, n-мерное пространство), можно получить основную теорему существования для задач управления — т.н. обобщенную теорему Вейерштрасса. Согласно этой теореме, решение общей задачи управления существует, если целевой функционал является непрерывным функционалом от функций управления и если подмножество бесконечномерного пространства, к которому принадлежат управления ( см. Управление, значение 2), является компактным.


Экономико-математический словарь: Словарь современной экономической науки. — М.: Дело. . 2003.

Смотреть что такое "Вейерштрасса теорема" в других словарях:

  • Вейерштрасса теорема — Фундаментальная теорема математического программирования, формулирующая условия существования глобального максимума (см. Максимизация). Заключается в том, что если допустимое множество X является компактным и непустым (см. статью Множество), то… …   Справочник технического переводчика

  • ВЕЙЕРШТРАССА ТЕОРЕМА — 1) В. т. о бесконечном про и введении [1]: для любой наперед заданной последовательности точек плоскости комплексного переменного существует целая функция, имеющая нулями точки этой последовательности и только пх. Эта функция может быть построена …   Математическая энциклопедия

  • Сохоцкого-Вейерштрасса теорема — Сохоцкого ‒ Вейерштрасса теорема, теорема теории аналитических функций; всякая однозначная аналитическая функция в каждой окрестности существенно особой точки принимает значения, сколь угодно близкие к любому наперёд заданному комплексному числу …   Большая советская энциклопедия

  • Сохоцкого - Вейерштрасса теорема —         теорема теории аналитических функций (См. Аналитические функции); всякая однозначная аналитическая функция в каждой окрестности существенно особой точки (См. Существенно особая точка) принимает значения, сколь угодно близкие к любому… …   Большая советская энциклопедия

  • Теорема Больцано — Вейерштрасса — Теорема Больцано Вейерштрасса, или лемма Больцано Вейерштрасса о предельной точке  предложение анализа, одна из формулировок которого гласит: из всякой ограниченной последовательности точек пространства можно выделить сходящуюся… …   Википедия

  • Теорема Линдемана — Вейерштрасса — Теорема Линдемана Вейерштрасса, являющаяся обобщением теоремы Линдемана, доказывает трансцендентность большого класса чисел. Теорема утверждает следующее[1]: Если различные алгебраические числа, линейно независимые над , то …   Википедия

  • Теорема Сохоцкого — Вейерштрасса — теорема комплексного анализа, описывающая поведение голоморфной функции в окрестности существенной особой точки. Формулировка Теорема. Если точка z0 является существенно особой для функции f(z), аналитической в некоторой проколотой окрестности …   Википедия

  • БОЛЬЦАНО - ВЕЙЕРШТРАССА ТЕОРЕМА — каждая ограниченная числовая последовательность содержит сходящуюся подпоследовательность. Теорема справедлива как для действительных, так и для комплексных чисел. Она обобщается на более общие объекты, напр.: всякое ограниченное бесконечное… …   Математическая энциклопедия

  • Теорема Вейерштрасса — В математике существует несколько теорем, названных в честь Карла Вейерштрасса: Теорема Вейерштрасса о функции, непрерывной на компакте Теорема Вейерштрасса об ограниченной возрастающей последовательности  Всякая ограниченная монотонно… …   Википедия

  • Теорема Сохоцкого — График фунции комплексного переменного e1/z. Центрирован относительно существенно особой точки z = 0. Цвет отражает аргумент, а яркость  модуль значения функции …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»